The active grandparent hypothesis: Physical activity and the evolution of extended human healthspans and lifespans – pnas.org

Advanced Search
See allHide authors and affiliations
Edited by Susan C. Alberts, Duke University, Durham, NC, and approved October 11, 2021 (received for review May 8, 2021)
The proximate mechanisms by which physical activity (PA) slows senescence and decreases morbidity and mortality have been extensively documented. However, we lack an ultimate, evolutionary explanation for why lifelong PA, particularly during middle and older age, promotes health. As the growing worldwide epidemic of physical inactivity accelerates the prevalence of noncommunicable diseases among aging populations, integrating evolutionary and biomedical perspectives can foster new insights into how and why lifelong PA helps preserve health and extend lifespans. Building on previous life-history research, we assess the evidence that humans were selected not just to live several decades after they cease reproducing but also to be moderately physically active during those postreproductive years. We next review the longstanding hypothesis that PA promotes health by allocating energy away from potentially harmful overinvestments in fat storage and reproductive tissues and propose the novel hypothesis that PA also stimulates energy allocation toward repair and maintenance processes. We hypothesize that selection in humans for lifelong PA, including during postreproductive years to provision offspring, promoted selection for both energy allocation pathways which synergistically slow senescence and reduce vulnerability to many forms of chronic diseases. As a result, extended human healthspans and lifespans are both a cause and an effect of habitual PA, helping explain why lack of lifelong PA in humans can increase disease risk and reduce longevity.
Author contributions: D.E.L. designed the study; and D.E.L., T.M.K., D.R., I.-M.L., and A.L.B. wrote the paper.
The authors declare no competing interest.
This article is a PNAS Direct Submission.
Published under the PNAS license.
Subscribers, for more details, please visit our Subscriptions FAQ.
Please click here to log into the PNAS submission website.
Thank you for your interest in spreading the word on PNAS.
NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.
Submit

Feedback    Privacy/Legal
Copyright © 2021 National Academy of Sciences. Online ISSN 1091-6490. PNAS is a partner of CHORUS, COPE, CrossRef, ORCID, and Research4Life.

source